Bose Einstein Scholarship Test

An endeavour of International Research Scholars and **Mentors with JMMC Research Foundation**

	Sample Question for Class - Major				
1.	 Let F be a field. Given below are six statements about F. 1. F is a skew field 2. F is a group with respect to multiplication 3. F is an integral domain 4. F has zero divisors 5. F has no zero divisors 6. Only ideals of F are {0} and itself In which of the following options all the statements are correct? 				
2.	(a) 1,2,3 (b) 1,3,5 (c) 2,4,6 (d) 4,5,6 Let $f(x,y) = \ln \sqrt{x+y}$ and $g(x, y) = \sqrt{x+y}$. Then the value of ∇^2 (fg) at (1, 0) is				
	(a) $-\frac{1}{2}$ (b) 0 (c) $\frac{1}{2}$ (d) 1				
3.	Let $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 2 & 10 & 8 & 5 & 9 & 3 & 6 & 11 & 4 & 12 & 1 & 7 \end{pmatrix}$				
	the cardinality of the orbit of 2 under σ is (a) 3 (b) 6 (c) 9 (d) 12				
4.					

5. Let $f(x) = x^2 + 1$, $g(x) = x^3 + x^2 + 1$ and $h(x) = x^4 + x^2 + 1$. Then (a) f(x) and g(x) are reducible over Z, (b) g(x) and h(x) are reducible over \tilde{Z}_2 (c) f(x) and h(x) are reducible over Z_2 (d) f(x), g(x) and h(x) are reducible over Z,

6.	The surface area of the solid generated by revolving the line segment $y = x + 2$ for $0 \le x \le 1$ about the line $y = 2$ is					
		(b) 2 π	(c) $2\sqrt{2\pi}$ (d)	4π		
7.		ation $2ydx - (3y - 2x)$, •			
	(a) exact and homogeneous but not linear					
	(b) homogeneous and linear but not exact(c) exact and linear but not homogeneous					
	(d) exact, homogeneous and linear					
	→					
8.	8. If $\overrightarrow{u}(t) = u_1(t) i + u_2(t) j + u_3(t)k$ is a unit vector and $\frac{du}{dt} \neq 0$, then the angle between					
	and $\frac{d\vec{u}}{dt}$ is		аі			
		π	π	π		
	(a) 0	$(b)\frac{\pi}{4}$	(c) $\frac{\pi}{3}$	(d) $\frac{\pi}{2}$		
9.	The order of 2 in the field \mathbb{Z}_{29} is					
9.	(a) 2	(b) 14	(c) 28	(d) 29		
	(u) 2	(0) 11	(c) 20	(d) 2)		